YouTube Transcript:
What are Convolutional Neural Networks (CNNs)?
Skip watching entire videos - get the full transcript, search for keywords, and copy with one click.
Share:
Video Transcript
OK, pop quiz. What am I drawing? I'm going to make three predictions here. Firstly. You think at your house, you'd be right? Secondly, that that just came pretty easily to you, it was effortless. And thirdly, you're thinking that I'm not much of an artist and you'd be right on all counts there. But how can we look at this set of geometric shapes and think, Oh, how? If you live in a house, I bet it looks nothing like this. Well, that ability to perform object identification that comes so easily to us does not come so easily to a computer, but that is where we can apply something called convolutional neural networks to the problem. Now, a convolutional neural network or a. See, and and. Is a area of deep learning that specializes in pattern recognition. My name is Martin Keane, and I work in the IBM garage at IBM. Now let's take a look at how CNN works at a high level. Well, let's break it down. CNN convolutional neural network Well, let's start with the artificial neural network part. This is a standard network that consists of multiple layers that are interconnected, and each layer receives some input. Transforms that input to something else and passes an output to the next layer, that's how neural networks work and see an end is a particular part of the neural network or a section of layers that say it's these three layers here and within these layers, we have something called filters. And it's the filters that perform the pattern recognition that CNN is so good at. So let's apply this to our house example now. If this house were an actual image, it would be a series of pixels, just like any image. And if we zoom in on a particular part of this house, let's say we zoom in around here, then we would get, well, the window. And what we're saying here is that a window consists of some perfectly straight lines. Almost perfectly straight lines. But, you know, a window doesn't need to look like that window could equally look like this, and we would still say it was a window. The cool thing about CNN is that using filters. CNN could also say that these two objects represent the same thing. The way they do that, then, is through the application of these filters. So let's take a look at how that works. Now, a filter is basically just a three by three block. And within that block, we can specify a pattern to look for. So we could say, let's look for. Pattern like this, a right angle in our image. So what we do is we take this filter and it's a three by three block here. We will analyze the equivalent three by three block up here as well. So. We'll look at first of all, these first. Group of three by three pixels, and we will see how close are they to the filter shape? And we'll get that numeric score, then we will move across one, come to the right and look at the next three by three block of pixels and score how close they are to the filter shape. And we will continue to slide over or vote over all of these pixel layers until we have not every three by three block. Now, that's just for one filter. But what that will give us is an array of numbers that say how closely and the image matches filter, but we can add more filters so we could add another three by three filter here. And perhaps this one looks for a shape like this. And we could add a third filter here, and perhaps this looks for a different kind of right angle shape. If we take the numeric arrays from all of these filters and combine them together in a process called pooling, then we have a much better understanding of what is contained within this series of pixels. Now that's just the first layer of the CNN. And as we go deeper into the neural network, the filters become more abstract all they can do more. So the second layer of filters perhaps can perform tasks like basic object recognition. So we can have filters here that might be able to recognize the presence of a window or the presence of a door or the presence of a roof. And as we go deeper into the sea and into the next leg, well, maybe these filters can perform even more abstract tasks, like being able to determine whether we're looking at a house or we're looking at an apartment or whether we're looking at a skyscraper. So you can see the application of these filters increases as we go through the network and can perform more and more tasks. And that's a very high level basic overview of what CNN is. It has a ton of business applications. Think of OCR, for example, for understanding handwritten documents. Think of visual recognition and facial detection and visual search. Think of medical imagery and looking at that and determining what is being shown in an imaging scan. And even think of the fact that we can apply a CNN to perform object identification for. Body drawn houses, if you have any questions, please drop us a line below, and if you want to see more videos like this in the future, please like and subscribe. Thanks for watching.
Share:
Paste YouTube URL
Enter any YouTube video link to get the full transcript
Transcript Extraction Form
How It Works
Copy YouTube Link
Grab any YouTube video URL from your browser
Paste & Extract
Paste the URL and we'll fetch the transcript
Use the Text
Search, copy, or save the transcript
Why you need YouTube Transcript?
Extract value from videos without watching every second - save time and work smarter
YouTube videos contain valuable information for learning and entertainment, but watching entire videos is time-consuming. This transcript tool helps you quickly access, search, and repurpose video content in text format.
For Note Takers
- Copy text directly into your study notes
- Get podcast transcripts for better retention
- Translate content to your native language
For Content Creators
- Create blog posts from video content
- Extract quotes for social media posts
- Add SEO-rich descriptions to videos
With AI Tools
- Generate concise summaries instantly
- Create quiz questions from content
- Extract key information automatically
Creative Ways to Use YouTube Transcripts
For Learning & Research
- Generate study guides from educational videos
- Extract key points from lectures and tutorials
- Ask AI tools specific questions about video content
For Content Creation
- Create engaging infographics from video content
- Extract quotes for newsletters and email campaigns
- Create shareable memes using memorable quotes
Power Up with AI Integration
Combine YouTube transcripts with AI tools like ChatGPT for powerful content analysis and creation:
Frequently Asked Questions
Is this tool really free?
Yes! YouTubeToText is completely free. No hidden fees, no registration needed, and no credit card required.
Can I translate the transcript to other languages?
Absolutely! You can translate subtitles to over 125 languages. After generating the transcript, simply select your desired language from the options.
Is there a limit to video length?
Nope, you can transcribe videos of any length - from short clips to multi-hour lectures.
How do I use the transcript with AI tools?
Simply use the one-click copy button to copy the transcript, then paste it into ChatGPT or your favorite AI tool. Ask the AI to summarize content, extract key points, or create notes.
Timestamp Navigation
Soon you'll be able to click any part of the transcript to jump to that exact moment in the video.
Have a feature suggestion? Let me know!Get Our Chrome Extension
Get transcripts instantly without leaving YouTube. Install our Chrome extension for one-click access to any video's transcript directly on the watch page.